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Abstract. We present a technique for describing solutions of the helium atom by using the non-orthogonal
Laguerre-L2 basis functions. The frozen-core approximation is used to calculate the helium energies. The
completeness of helium wavefunctions obtained is studied in terms of weights of the Gaussian quadrature.
The convergence of the energies is shown as the L2 basis size increases and the completeness of the L2 wave
functions is also shown for different basis size.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.Dp Atomic excitation
and ionization by electron impact

1 Introduction

The L2 method which uses square integrable (L2) func-
tions has been the subject of considerable study for
the solution of electron-atom scattering problems. Heller
et al. [1] restricted the problem to that of understanding
the process of extracting scattering information from ap-
proximations to the Fredholm determinant calculated in
a finite L2 basis. They showed that a calculation with
an L2 discretised matrix representation of an operator
with a continuous spectrum was equivalent to a numer-
ical quadrature approximation to the spectral represen-
tation of the operator. Heller et al. [2] further used the
equivalent-quadrature relationship between the diagonal-
isation of the s-wave kinetic energy operator in a non-
orthogonal Laguerre-type basis and a Chebyschev quadra-
ture of the second kind to construct potential-scattering
phase shifts from approximations to the Fredholm deter-
minant using only L2 functions. They produced highly
accurate phase shifts over a continuous range of energies
for electron-hydrogen scattering in the static approxima-
tion. Heller and Yamani [3] also used L2 functions of a
non-orthogonal Laguerre type to obtain phase shifts, wave
functions, etc. for the full Hamiltonian in which the only
approximation was made to the potential V . They worked
out the method which has become known as the J-matrix
method, to calculate the s-wave electron-hydrogen scatter-
ing model. Heller and Yamani [4] then developed a pseudo-
state model which is based on the L2 functions and applied
the model to elastic and inelastic scattering above and be-
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low the ionisation threshold. Yamani and Reinhardt [5]
further generalised the techniques of Heller et al. [1,2]
to higher partial waves for Coulomb interactions. They
showed the convergence of the expansion for repulsive and
attractive-Coulomb phase shifts, and the photoionisation
cross-sections. Stelbovics and Slim [6] used the L2 func-
tions of Laguerre types to describe the scattering solu-
tions of the Schrödinger equation for a variable coupling
constant in a simple separable potential model which al-
lows an exact solution. They found that the orthogonal
polynomials which are generated by the L2 solutions were
positive definite only for a limited range of the coupling
constant. Stelbovics and Winata [7] have studied and ex-
amined the convergence rates of the L2 expansion of non-
orthogonal Laguerre types. They showed that the L2 wave-
functions converges to the exact Coulomb wavefunction
in the coordinate representation. They used the Born ap-
proximation ionisation cross-section for electron-hydrogen
collisions to further studies such as the convergence. It was
shown that the convergence rate was rapid.

Konovalov and McCarthy [8] have worked on the
Poet-Temkin model of electron-hydrogen scattering that
can be solved to any required accuracy using the J-matrix
method. The convergence in the basis size is achieved to
an accuracy of better than 2% with the inclusion of 37 ba-
sis L2 functions of a non-orthogonal Laguerre type. Pre-
viously observed pseudoresonances in the J-matrix cal-
culation naturally disappear with an increase in basis
size. For electron-helium excitation cross-sections in the
energy region of the n = 2 and n = 3, the calcula-
tion using the J-matrix was later presented by Konovalov
and McCarthy [9]. The calculation results were solved to



308 The European Physical Journal D

an accuracy of better than 3% for n = 2 and 5% for
n = 3 excitation cross-sections. The J-matrix method re-
quired wavefunctions of the whole system (He−) target
plus the scattering electron. They created the He− states
by adding one more electron to the target configura-
tion with the electron being in one-electron states with
n − l ≤ Nl. The total Hamiltonian of He− was diagonal-
ized for each total spin S and orbital angular momentum
L. More than 1000 configurations were used for various
LS. They used the convenient formulae of Fano to calcu-
late the He− matrix element.

A new expansion of the Coulomb eigenfunctions in an
orthogonal Laguerre L2 basis function was later presented
by Stelbovics [10]. It was shown that the new expansion
can be directly applied to the coupled-channels formula-
tion of electron-hydrogen scattering. The close-coupling
formalism studied by expanding the target states in the
orthogonal L2 Laguerre basis was shown by Bray and
Stelbovics [11]. Their theory is without approximation,
and convergence is established by increasing the basis
size. They present convergent elastic, 2s, and 2p differ-
ential electron-hydrogen cross-section, spin asymmetries,
and angular-correlation parameters for the 2p excitation
at 35, 54.4, and 100 eV. The summary of convergent close-
coupling theory for the calculation of electron-helium scat-
tering was presented by Fursa and Bray [12]. They demon-
strated its applicability for projectile energies in the range
of 1.5 to 500 eV to the scattering from the ground state to
n ≤ 3 states. The extensive review and discussion of the
convergent close-coupling method can be seen for example
in other papers [13–15].

Basis sets of the B-splines type have been tried by
Bachau et al. [16] in a new development of the wavefunc-
tion of the atomic and molecular physics. B-splines have
the property of being “complete enough” with a relatively
small number of basis functions and, since linear depen-
dences are negligible, even for a large basis, it is possible
for such a basis set to compete with the finite-difference
methods. This accounts for the recent swing towards the
use of B-splines in atomic calculations, while also for
molecular problems, B-splines have considerable advan-
tages over earlier basis sets. B-splines have been used in
many other types of calculation of various properties for
both bound and continuum states and this is the main
subject of the physics part in their review. In particular,
B-splines are able to provide a very accurate representa-
tion of continuum states, which makes them superior to
more conventional L2 basis sets.

In atomic physics, one approach to describing elec-
tron scattering from atomic targets is to use pseudostate
coupled-channel equations [17]. In this model one uses
a finite basis of L2 functions to diagonalize the target
Hamiltonian thus giving both negative and positive energy
states. The basis is usually chosen so that the lowest-lying
channels are described adequately while the other bound
states are collectively approximated by the remaining en-
ergy eigenvectors. The positive energy eigenstates and as-
sociated L2 eigenvector in some way approximate the tar-
get continuum. The target states cannot all be included

in any practical implementation of the electron scattering
equations. A pragmatic way to approach such a calcula-
tion is to include the effects of the target states which are
liable to be most important, for example in the helium tar-
get to choose just the 1,3S and 1,3P levels. Unfortunately
it has been observed that such expansions are inadequate
at all but the lowest energies; there is considerable evi-
dence that the coupling to all open channels must be in-
cluded in some way. Above the ionisation threshold this
means that allowance for coupling to continuum channels
must be made. An efficient way to include such coupling
is by means of taking a subspace of the one-body Hilbert
space of the target. A convenient basis for the one-body
Hilbert space is that provided by the Laguerre functions.
In this work we discuss this method in some detail, with
the primary purpose being to elucidate the sense in which
these finite-basis expansions of the target approximate the
true target states so that the convergence of the close-
coupling equations of the electron scattering equations can
be studied.

Since the ground work of Yamani and Reinhardt [5],
Stelbovics and Winata [7] and Stelbovics [10] who devel-
oped a systematic approach to illustrate the mathemat-
ical sense in which the L2 functions would approximate
electron scattering solutions, the L2 functions of the non-
orthogonal Laguerre-type and the orthogonal Laguerre-
type have been widely applied to describe the scattering
processes. The L2 expansion methods with an orthogo-
nal Laguerre basis function has been successfully applied
to electron-helium scattering by Fursa and Bray [12,13]
and Bray et al. [14] for which they used the frozen-core
representation of the helium target. They were interested
solely in numerical calculations and did not investigate
the completeness of the helium target. They made the as-
sumption that the completeness of the helium target using
the frozen-core approximation was similar to the hydro-
gen target with which Bray and Stelbovics [11] applied to
electron-hydrogen scattering. Therefore, we focus on ex-
tending the use of non-orthogonal Laguerre basis function
using the frozen-core approximation which is a relatively
new development in the completeness of a two-electron
atom system. Since non-orthogonal Laguerre basis func-
tions have the property of being “complete enough” with
a relatively small number of basis functions, it is possi-
ble to also apply such a basis set in the electron-helium
system.

In this paper, we present a thorough study of the L2 ex-
pansion methods for the helium atom. The non-orthogonal
Laguerre basis will be used and the related expansions
for discrete and continuum states will be considered. The
finite-basis expansions, considered as approximations to
the infinite expansion will be studied and their conver-
gence will be shown. The manner in which the L2 approx-
imated wavefunctions are related to the true eigenstates
is examined through the underlying Gaussian quadrature.
The frozen-core [12,18] approximation will be used.

This paper is written in the following way. In Sec-
tion 2, we present the helium configuration. The details
of the frozen-core approximation and its L2 solution of
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helium atom are given in Section 3. In Section 4 we exam-
ine the finite basis solution and the standard presentations
of the Gaussian quadrature approximations and their con-
vergence properties. Finally in Section 5, we draw conclu-
sions from this work and indicate future directions for our
research.

2 Helium configurations

We consider first a system of two electrons in LS cou-
pling. We define the orbital functions in radial, spherical
harmonic and spin functions for a single-electron as:

ϕ (x) =
1
r
φnl (r) Ylm (r̂) χ (σ) . (1)

Here x is used to denote both the spatial and spin coordi-
nates. The radial part of the single-particle functions, we
take to be the non-orthogonal Laguerre basis:

φnl (r) = (λlr)
l+1 exp(−λlr/2)L2l+1

n (λlr) , (2)

where the L2l+1
n (λlr) are the associated Laguerre polyno-

mials, λl is the interaction parameter and n ranges from
1 to the basis size N . The two-particle space is written in
terms of the product of these orbitals for coordinates r1

and r2. We may rearrange these products into linear com-
binations which are eigenvalues of the total orbital angular
momentum and total spin:

Φ
(αβ)
lmsµ (x1, x2) =

1
r1r2

φnαlα (r1)

× φnβnβ
(r2) |lαlβ : lm〉X (sυ) , (3)

the notation α and β are used to denote the first and
second electron, where:

|lαlβ : lm〉 =
∑

mα,mβ

〈lαlβmαmβ | lm〉Ylαmα (r̂1)Ylβmβ
(r̂2) ,

(4)
and the two-electron spin function is defined by:

X (sυ) =
∑

σ1,σ2

〈
1
2

1
2
µαµβ

∣∣∣∣ sυ

〉
χ 1

2µα
(σ1)χ 1

2µβ
(σ2).

(5)
The helium atom states in configuration interaction form
are:

Ψnπlmsυ (x1, x2) =
∞∑

nα,nβ

C(αβ)
nπ Φ

(αβ)
nlmsυ , (6)

where the configurations are chosen so that the selec-
tion rules are satisfied for the combination (αβ) and they
are correctly antisymmetrized two-electron states of par-
ity (−1)lα+lβ with total orbital angular momentum eigen-
values l, m and spin eigenvalues s, υ. Here the configu-
ration interaction coefficients C

(αβ)
n satisfy the symmetry

property:
C(αβ)

n = (−1)lα+lβ−l−s C(βα)
n , (7)

to ensure antisymmetry of the two-electron system states.

3 The L2 solution of helium atom

The non-relativistic helium atom Hamiltonian can be
written as:

H = H1 + H2 + V12, (8)

where:
Hi = Ki + Vi = −1

2
∇2

i −
Z

ri
, (9)

for i = 1, 2, is the one-electron Hamiltonian of the He+ ion
(Z = 2), and:

V12 =
1

r12
, (10)

is the electron-electron potential. Atomic units (a.u.) are
assumed throughout.

Whereas the above Hamiltonian formalism is general
and includes two-electron excitation, in practice we have
found that it is sufficient to make the frozen-core ap-
proximation, where one of the electrons is in a fixed or-
bital while the second electron is described by a set of
independent L2 functions, thus permitting it to span the
discrete and continuum excitations, in which all config-
urations have one of the electrons occupying the lowest
orbital [12,18].

In order to get a good description of the He+ ion state,
we must diagonalize the ground state (1s) Hamiltonian in
Ψ(x1, x2):

〈Ψm| − 1
2
∇2

1 −
Z

r1
− εnα |Ψn〉 = 0, (11)

where εnα is the energy associated with the 1s state of
He+ ion. By using equations (1–6) and applying the re-
currence formulas of the Laguerre polynomials, the differ-
entiation formula and orthogonality relations [19], equa-
tion (11) finally becomes:

2
[(

nα + lα + 1 − 2
Z

λlα

)
Xα + 2

Z

λlα

]
P lα+1

nα
(Xα)

− (nα + 2lα + 1)P lα+1
nα−1 (Xα)− (nα + 1)P lα+1

nα+1 (Xα) = 0,

(12)

where:

P lα+1
nα

(Xα) =
Γ (nα + 2lα + 1)

Γ (nα + 1)
Cα

nα
(Xα) , (13)

to initialize the recurrence one sets:

P lα+1
−1 (Xα) = 0; P lα+1

0 (Xα) = 1, (14)

and:

Xα =
εnα − λ2

lα

8

εnα +
λ2

lα

8

, (15)

the energy εnα which is obtained from equation (15) and
is given by

εnα =
λ2

lα

8

[
1 + Xα

1 − Xα

]
. (16)
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The excitation states for Ψ(x1, x2) can be obtained by
solving the equation:

〈
Ψm

∣∣∣ − 1
2
∇2

2 −
Z

r2
+

1
r12

− εnβ

∣∣∣Ψn

〉
= 0, (17)

where εnβ
is the energy associated with the excitation

states of the helium atom. After the same step as the
ground state equation, equation (17) can be written as:

2

[(
nβ + lβ + 1 −

(
2

Z

λlβ

− 2
λlβ

− Vexc

))
Xβ

+
(

2
Z

λlβ

− 2
λlβ

− Vexc

) ]
P

lβ+1
nβ

(
Xβ

)

− (nβ + 2lβ + 1)P
lβ+1
nβ−1

(
Xβ

)− (nβ + 1)P
lβ+1
nβ+1

(
Xβ

)
= 0,

(18)

where:

P
lβ+1
nβ

(
Xβ

)
=

Γ (nβ + 2lβ + 1)
Γ (nβ + 1)

Cβ
nβ

(
Xβ

)
, (19)

and:

Vexc = 2
(

λlβ

λlα

)lβ

×

(−1)s

(2lβ + 1)

∞∫
0

∞∫
0

r
lβ
<

r
lβ+1
>

φα(r2)φβ(r1)φα(r1)φβ(r2)dr1dr2

〈φα(r1)|φα(r1)〉〈φβ(r2)|φβ(r2)〉 ,

(20)

to initialize the recurrence one sets:

P
lβ+1
−1

(
Xβ

)
= 0; P

lβ+1
0

(
Xβ

)
= 1, (21)

and:

Xβ =
εnβ

−
λ2

lβ

8

εnβ
+

λ2
lβ

8

, (22)

the energy εnβ
which is obtained from equation (22) is

given by:

εnβ
=

λ2
lβ

8

[
1 + Xβ

1 − Xβ

]
. (23)

It is clear that equations (12, 18) are just the recurrence
relation of Pollaczek polynomials in the variable X .

We state a number of results that can be obtained,
by choosing a subset of the basis we have truncated the
Fourier expansion. This is equivalent to imposing the
boundary condition that the (N + 1)th coefficient is zero,
namely that:

P l+1
N

(
XN

nl

)
= 0, n = 0, 1, ..., N − 1 (24)

as the notation implies there are N real roots to equa-
tions (12, 18). We associate a pseudoenergy εnα and
εnβ

through the mapping equations (16, 23).
The behavior of the non-orthogonal Laguerre basis in

equation (2) is oscillations and dependent upon the num-
ber of basis size N and interaction parameter λl, there-
fore the convergence of the resulting eigenvalues in equa-
tions (12, 18) are dependent upon the number of the
basis size N and interaction parameter λl. A good descrip-
tion of the ground state is obtained if we take λlα = 4.0
for Nα= 1 in equation (12). The second electron can be
in any nl state Nβ ≥ 1, we use the set of Nβ = 5,
10, 15 and 20. In this work, we take λlβ = 0.93 for the
1,3S states and we take λlβ = 0.72 (triplet) and 0.73 (sin-
glet) for the 1,3P states to obtain the number of coupled
bound and continuum helium states which are in con-
vergence with the results of other calculations [9,22] and
the observations [20,21] in equation (18) except for the
11S state. We obtained the energy of −2.862345 a.u. for
11S in the basis size 5. It is shown that by increasing the
number of the basis size up to 20 the convergence num-
ber obtained is −2.870211 a.u. while the experiment gives
−2.903386 a.u. [20,21]. The discrepancy between the cal-
culated and the experiment is 0.988%. In order to increase
the accuracy for the 11S state one can slightly change
the interaction parameter λlβ . For example by choosing
λlβ = 1.09 for Nβ = 5 and λlβ = 1.06 for Nβ = 10, 15
and 20, we obtain −2.903376 a.u. The resulting eigenval-
ues are presented in Table 1. All excited-state energies are
described to an accuracy of better than 0.1%.

4 Finite basis and equivalent quadrature

The idea that energy pseudostates are connected to the
true functions in the manner discussed has been devel-
oped in several papers with varying degrees of rigour. The
normalisation of the pseudostates is for example required
to calculate spectral integrals involving Green’s functions
constructed for the target Hamiltonian. For example sup-
pose it is necessary to evaluate:

〈f | (z − Hl)
−1 |f〉 =

∞∑

n=l+1

(z − εnl)
−1 〈f | Unl〉 〈Unl | f〉

+

∞∫

0

dE′ (z − E′) 〈f | UE′l〉 〈UE′l | f〉 , (25)

for some L2 function |f〉 where:

〈UE′l | UE′l〉 = δ (E − E′) . (26)

If we diagonalize Hl in a finite Laguerre basis of dimension
N we have:

〈f |(z − H l)−1|f〉 =
N−1∑

i=0

(z−εl
Ni)

−1〈f |Ψαβ
Ni 〉〈Ψαβ

Ni |f〉. (27)
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Table 1. The ground and excited-states eigenvalues (εnα +εnβ ) of the non-relativistic Hamiltonian of the helium atom (in a.u.)

are shown as a function of number of L2 basis functions Nβ = 5, 10, 15 and 20. The observation results by references [20,21].
Highly accurate non-relativistic energy levels of helium by Konovalov and McCarthy (KM) [9] and by Accad et al. [22].

Nβ 5 10 15 20 Observation KM Accad et al.

State [ Present work ] [20,21] [9] [22]

11S −2.862345 −2.868680 −2.868880 −2.870211 −2.903386 −2.87247 −2.90372

23S −2.174905 −2.174918 −2.174940 −2.174988 −2.175028 −2.1742 −2.17523

21S −2.145175 −2.145385 −2.145575 −2.145678 −2.145770 −2.1434 −2.14597

23P −2.132880 −2.132900 −2.132918 −2.132970 −2.132969 −2.1312 −2.13316

21P −2.122890 −2.122956 −2.123211 −2.123545 −2.123637 −2.1223 −2.12384

33S −2.068295 −2.068320 −2.068358 −2.068399 −2.068497 −2.0684 −2.06869

31S −2.060760 −2.060798 −2.060860 −2.060952 −2.061079 −2.0605 −2.06127

33P −2.057260 −2.057350 −2.057560 −2.057784 −2.057891 −2.0575 −2.05808

31P −2.054297 −2.054580 −2.054750 −2.054835 −2.054953 −2.0546 −2.05515

43S −2.024980 −2.035111 −2.035326 −2.035420 −2.036323

41S −2.027555 −2.032980 −2.033290 −2.033307 −2.033398

43P −2.031576 −2.031950 −2.032002 −2.032046 −2.032136

41P −2.030322 −2.030425 −2.030650 −2.030790 −2.030880

Table 2. The weights of Gaussian quadrature and configuration interaction coefficient are shown for λlβ = 0.93, lβ = 0 (singlet)
and different basis sizes N . Powers of ten are denoted by the number in brackets.

N i XNi WNi

∑
WNi Cβ

Ni

1 1 0.73493151(+1) −0.99734808(+1) −0.99734808(+1) 0.68080834

1 0.66808090(+1) −0.10774258(+2) 0.74808942

2 −0.35185507(+1) 0.31493798 0.14340948

5 3 −0.16628586(+1) 0.14155879 −0.99734808(+1) 0.12524468

4 −0.35362914 0.20171034 0.20969070

5 0.68283608 0.14256958 −0.99734808(+1)

1 0.66808089(+1) −0.10772700(+2) 0.74803536

2 −0.35195686(+1) 0.31248160 0.14283304

3 −0.18855244(+1) 0.71324684(−1) 0.85402873(−1)

4 −0.14455480(+1) 0.41947328(−1) −0.99734808(+1) 0.71142478(−1)

10 5 −0.10519270(+1) 0.58201515(−1) 0.91485259(−1)

6 −0.57415939 0.73797063(−1) 0.11761430

7 −0.77645763(−1) 0.81947100(−1) 0.14979376

8 0.37253183 0.78209674(−1) 0.19177824

9 0.72269176 0.57963768(−1) 0.24834868

10 0.93569806 0.23346650(−1) 0.32731445

1 0.66808089(+1) −0.10772700(+2) 0.74803535

2 −0.35195686(+1) 0.31248160 0.14283304

3 −0.18857648(+1) 0.71114521(−1) 0.85273406(−1)

4 −0.14816654(+1) 0.29140499(−1) 0.58862921(−1)

5 −0.12887558(+1) 0.21661697(−1) 0.52845917(−1)

6 −0.10902887(+1) 0.29261407(−1) 0.64270162(−1)

7 −0.84176699 0.36994743(−1) −0.99734808(+1) 0.76987035(−1)

15 8 −0.56057641 0.43252889(−1) 0.90433632(−1)

9 −0.26506416 0.47777777(−1) 0.10556541

10 0.27839887(−1) 0.49986514(−1) 0.12317497

11 0.30247889 0.49081183(−1) 0.14409329

12 0.54481143 0.44233034(−1) 0.16933340

13 0.74294921 0.34947410(−1) 0.20029170

14 0.88776305 0.21760215(−1) 0.23918206

15 0.97358844 0.75257880(−2) 0.28996389
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Table 3. The weights of Gaussian quadrature and configuration interaction coefficient are shown for λlβ = 0.93, lβ = 0 (triplet)
and different basis sizes N . Powers of ten are denoted by the number in brackets.

N i XNi WNi

∑
WNi Cβ

Ni

1 1 0.15689909(+1) −0.89376884 −0.89376884 0.68080835

1 0.13282618(+1) −0.84345818 0.87073610

2 0.41686718(+1) −0.68175809(−1) 0.79678560(−1)

5 3 −0.50627876(+1) 0.43604365(−3) −0.89376884 0.46067410(−2)

4 −0.15819399(+1) 0.11690549(−2) 0.11558710(−1)

5 0.38607842 0.16260060(−1) 0.88403520(−1)

1 0.13250302(+1) −0.85510609 0.88107540

2 0.41686005(+1) −0.67731395(−1) 0.79419330(−1)

3 −0.50659650(+1) 0.30828950(−3) 0.38725260(−2)

4 −0.21120690(+1) 0.31064874(−3) −0.89376884 0.54271910(−2)

10 5 −0.15184051(+1) 0.26082688(−3) 0.55281310(−2)

6 −0.10145974(+1) 0.56576811(−3) 0.91031150(−2)

7 −0.42011142 0.13634289(−2) 0.16831390(−1)

8 0.16170720 0.35159590(−2) 0.35179440(−1)

9 0.63352830 0.90251728(−2) 0.85245700(−1)

10 0.92129230 0.13718550(−1) 0.22678300

1 0.13250260(+1) −0.85512987 0.88109330

2 0.41686005(+1) −0.67731395(−1) 0.79419330(−1)

3 −0.50659650(+1) 0.30828950(−3) 0.38725260(−2)

4 −0.21123202(+1) 0.28380453(−3) 0.51871930(−2)

5 −0.15654176(+1) 0.17210788(−3) 0.44492450(−2)

6 −0.13298493(+1) 0.14342999(−3) 0.42620740(−2)

7 −0.10998427(+1) 0.23698094(−3) −0.89376884 0.57706970(−2)

15 8 −0.81221773 0.39983448(−3) 0.80686310(−2)

9 −0.48953736 0.67198745(−3) 0.11537710(−1)

10 −0.15626455 0.11518934(−2) 0.17145200(−1)

11 0.16520870 0.20196838(−2) 0.26718840(−1)

12 0.45456512 0.35650010(−2) 0.43916050(−1)

13 0.69410085 0.60127339(−2) 0.76157350(−1)

14 0.86942456 0.83331104(−2) 0.13722640

15 0.97091398 0.57935694(−2) 0.24243530

The observation that for the Laguerre basis (2) in the he-
lium target eigenstates have L2 expansion coefficients pro-
portional to the Pollaczek polynomials can be exploited
further to show a connection with Gaussian quadrature
rules. Consider the completeness relation for the true
eigenfunctions folded between two arbitrary L2 wavefunc-
tions |f〉 and |g〉:

∞∑

n

〈f | Ψnl〉 〈Ψnl | g〉 +

∞∫

0

〈f | ΨEl〉 〈ΨEl | g〉 dE = 〈f | g〉

(28)
and a finite basis representation in the space spanned by
the first N basis states of type (2):

N∑

i

〈f | Φni〉 〈Φni | g〉 = 〈f | g〉N . (29)

Generally |f〉 and |g〉 may be chosen to possess an infinite
number of non-zero Fourier coefficients so:

〈f | g〉N �= 〈f | g〉 , (30)

but:
〈f | g〉N → 〈f | g〉 as N → ∞. (31)

To derive an equivalent quadrature rule for this conver-
gence we write equation (28) as:

〈f | g〉N =
N∑

iα,iβ

(
C

(αβ)
Ni

)2 〈
f

∣∣∣ ΦN

(
X

(αβ)
Ni

)〉

×
〈
ΦN

(
X

(αβ)
Ni

) ∣∣∣ g
〉

. (32)

We see that the quadrature rule implied is for a func-
tion F (X) just:

∫
dµ (X)F (X) =

N∑

i=1

(
C

(αβ)
Ni

)2

F
(
X

(αβ)
Ni

)
. (33)
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Table 4. The weights of Gaussian quadrature and configuration interaction coefficient are shown for λlβ = 0.73, lβ= 1 (singlet)
and different basis sizes N . Powers of ten are denoted by the number in brackets.

N i XNi WNi

∑
WNi Cβ

Ni

1 1 0.37412764(+1) −0.53824836 −0.53824836 0.42720019

1 0.33163164(+1) −0.69247911 0.52713383

2 −0.10872138(+2) 0.72221779(−1) 0.75194511(−1)

5 3 −0.26953315(+1) 0.19776099(−1) −0.53824836 0.70527762(−1)

4 −0.10017035(+1) 0.30593764(−1) 0.11918815

5 0.42493210 0.31639105(−1) 0.22613564

1 0.33163066(+1) −0.69254346 0.52715943

2 −0.10872138(+2) 0.72221779(−1) 0.75194508(−1)

3 −0.27621050(+1) 0.16482855(−1) 0.63814190(−1)

4 −0.18521338(+1) 0.68742118(−2) 0.47330708(−1)

10 5 −0.14079582(+1) 0.71727296(−2) −0.53824836 0.52617990(−1)

6 −0.89939382 0.10482557(−1) 0.71621365(−1)

7 −0.33961324 0.13261339(−1) 0.95922494(−1)

8 0.18642161 0.13966144(−1) 0.12631504

9 0.60920327 0.10434779(−1) 0.15753703

10 0.88329485 0.33987000(−2) 0.16452349

1 0.33163066(+1) −0.69254346 0.52715943

2 −0.10872138(+2) 0.72221779(−1) 0.75194508(−1)

3 −0.27621061(+1) 0.16482980(−1) 0.63814422(−1)

4 −0.18568357(+1) 0.65489316(−2) 0.46159286(−1)

5 −0.15242802(+1) 0.34794911(−2) 0.35793616(−1)

6 −0.13145464(+1) 0.35360621(−2) 0.37682827(−1)

7 −0.10684716(+1) 0.48868371(−2) 0.46860362(−1)

15 8 −0.77524503 0.61981290(−2) −0.53824836 0.56966251(−1)

9 −0.45748953 0.73469580(−2) 0.68449069(−1)

10 −0.13617966 0.81724991(−2) 0.81765562(−1)

11 0.16970592 0.83898340(−2) 0.96911921(−1)

12 0.44336218 0.76436242(−2) 0.11297434

13 0.67080942 0.57196210(−2) 0.12707977

14 0.84180300 0.29807388(−2) 0.13233640

15 0.95096966 0.68762244(−3) 0.11417185

The quadrature rule (33) can be identified as a special
case of Gaussian quadrature based Pollaczek polynomials.
This can be seen by noting some standard results that
for a general orthogonal polynomial there exists a Gauss
quadrature formula given by:

b∫

a

F (X) dµ (X) ≈
N∑

i=1

WNiF (XNi). (34)

The limits a and b comprise any interval which covers the
point and continuum spectrum mapped into the X vari-
able. WNi are the associated quadrature weights which
are given by:

W
(αβ)
Ni =

πΓ (N + 2l + 1)
22lΓ (N + 1)

1

P l+1
N−1

(
X

(αβ)
Ni

) d

dx
P l

N

(
X

(αβ)
Ni

) .

(35)

The configuration interaction coefficient C
(αβ)
Ni which are

then determined using (35) is given by

(
C

(αβ)
Ni

)2

=
22l

π

λl(
1 − X

(αβ)
Ni

)W
(αβ)
Ni . (36)

The values of the configuration interaction coefficient Cα
1

and weight Wα
1 which belong to the ground state are

1.4141959 and −1.62830282×104. The values of W β
Ni and

Cβ
Ni are shown in Tables 2 and 3 for singlet and triplet

S-states with different basis size and λlβ = 0.93. We also
show the results for P-states calculated using the assump-
tion that the convergence behavior of the configuration
interaction coefficient and weight which the orbital angu-
lar momentum is not zero (lβ �= 0). The values of W β

Ni

and Cβ
Ni for p-states for λlβ = 0.72 (triplet) and 0.73 (sin-

glet) with different basis size is shown in Tables 4 and 5
respectively.
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Table 5. The weights of Gaussian quadrature and configuration interaction coefficient are shown for λlβ = 0.72, lβ= 1 (triplet)
and different basis sizes N . Powers of ten are denoted by the number in brackets.

N i XNi WNi

∑
WNi Cβ

Ni

1 1 0.37412764(+1) −0.44737870 −0.44737870 0.38679651

1 0.28868042(+1) −0.55322787 0.51845362

2 −0.15981694(+2) 0.42277639(−1) 0.47773401(−1)

5 3 −0.28654172(+1) 0.13608096(−1) −0.44737870 0.56809610(−1)

4 −0.10845255(+1) 0.22113873(−1) 0.98616618(−1)

5 0.40488989 0.27849554(−1) 0.20712464

1 0.28867808(+1) −0.55175847 0.51776786

2 −0.15981694(+2) 0.42277639(−1) 0.47773401(−1)

3 −0.29189870(+1) 0.10188871(−1) 0.48819960(−1)

4 −0.19025399(+1) 0.49457039(−2) 0.39522669(−1)

10 5 −0.14447971(+1) 0.49827350(−2) −0.44737870 0.43224880(−1)

6 −0.93291512 0.76078886(−2) 0.60068528(−1)

7 −0.36480534 0.10209363(−1) 0.82810476(−1)

8 0.17140160 0.11548178(−1) 0.11303319

9 0.60291796 0.93449200(−2) 0.14688214

10 0.88201378 0.32744685(−2) 0.15950565

1 0.28867808(+1) −0.55175847 0.51776787

2 −0.15981694(+2) 0.42277639(−1) 0.47773401(−1)

3 −0.29189875(+1) 0.10189336(−1) 0.48821071(−1)

4 −0.19059833(+1) 0.47739343(−2) 0.38807259(−1)

5 −0.15493787(+1) 0.25275221(−2) 0.30147522(−1)

6 −0.13353269(+1) 0.24725384(−2) 0.31154371(−1)

7 −0.10898995(+1) 0.34857377(−2) −0.44737870 0.39102629(−1)

15 8 −0.79552582 0.45488820(−2) 0.48192318(−1)

9 −0.47513313 0.55689910(−2) 0.58829337(−1)

10 −0.15030607 0.64293695(−2) 0.71581170(−1)

11 0.15943127 0.68846533(−2) 0.86651429(−1)

12 0.43676915 0.65699504(−2) 0.10340919

13 0.66728260 0.51599192(−2) 0.11923534

14 0.84040398 0.28165033(−2) 0.12719364

15 0.95066943 0.67479605(−3) 0.11198233

5 Conclusions and future work

Using the restricted basis for the helium state in which one
of the electrons is in a fixed orbital (1s) while the second
electron is described by a set of independent L2 functions,
we are able to produce the complete helium energies which
agree well with the results of the observations [20,21] and
other calculations of Konovalov and McCarthy [9] and
Accad et al. [22].

The completeness relation of the helium eigenfunctions
is calculated in term of the configuration interaction coef-
ficient via the Gaussian quadrature. It is shown that the
weights and configuration interaction coefficients converge
to the same number for different basis size. It is therefore
our next goal to apply these results to the electron-helium
cross-section calculation.
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